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The Anderson impurity model for Kondo problem is investigated for arbitrary spin-orbital degeneracy N of
the magnetic impurity by the equation-of-motion method �EOM�. By employing a different decoupling
scheme, a set of self-consistent equations for the one-particle Green’s function is derived and numerically
solved in the large-N approximation. For the particle-hole symmetric Anderson model with finite Coulomb
interaction U, we show that the Kondo resonance at the impurity site exists for all N�2. The approach
removes the pathology in the standard EOM for N=2 and has the same level of applicability as noncrossing
approximation. For N=2, an exchange field splits the Kondo resonance into only two peaks as predicted by a
more rigorous numerical renormalization-group method. The temperature dependence of the Kondo resonance
peak is also discussed.
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I. INTRODUCTION

The Kondo effect has been a subject of intensive investi-
gation both experimentally and theoretically for many years.
The Anderson impurity model1 has been regarded as one of
the successful models, which correctly describe the coupling
between conduction electrons and local magnetic impurity.
Although many techniques have been developed for solving
this model,2 it is desirable to have a semianalytic and more
generic method that can treat the finite-U case at finite tem-
peratures. It is believed that the effect due to finite U is
important in determining spectroscopic, thermodynamics,
and transport properties at finite temperature.3,4

The equation-of-motion method �EOM� �Refs. 5–9� might
be such a candidate. This approach has been employed to
derive an analytical expression for the single-particle Green’s
function of the local electron at the impurity site, and from
which finite temperature properties of the system can be ob-
tained. The EOM successfully yields approximate but correct
behaviors for the resistivity,10,11 the spin susceptibility,10,12

and other transport properties.13 Especially, when the tem-
perature is above TK, the results based on this approach agree
well with those from perturbative calculations. However, the
most serious weakness in the standard EOM is its failure to
show the Kondo resonance peak at the Fermi energy for
symmetric Anderson model with finite U for spin-orbital N
=2. Recently, it has been correctly pointed out14 that the
particle-hole symmetric case is the singular point for the
standard EOM. However, we note that the noncrossing ap-
proximation �NCA� method with large-N expansion,15–20

when generalized to the finite-U cases,21 is successful in pro-
ducing a Kondo resonance peak at the Fermi energy for the
particle-hole symmetric case. Therefore, it would be legiti-
mate to ask whether one can develop a large-N EOM and the
Kondo resonance peak can be recovered when N=2. Another
important issue is whether this kind of method can describe
the effect of applied exchange magnetic field correctly. By
addressing these two important issues, this paper will estab-
lish the validity of the EOM for treating the Kondo problem
in the large-N limit.

The outline of this paper is as follows. In Sec. II, we
present the large-N-limit EOM approach to the Anderson im-
purity model. The main difference of the derived impurity
Green’s function from that based on the conventional EOM
approach is discussed. In Sec. III, we present the numerical
results for the impurity spectral density in the particle-hole
symmetric case, which is the primary interest of this paper.
The effects of both the temperature and an exchange mag-
netic field are also discussed. A conclusion is given in Sec.
IV.

II. ANDERSON IMPURITY MODEL AND LARGE-N
EQUATION-OF-MOTION APPROACH

We start with the Anderson impurity Hamiltonian with an
arbitrary spin-orbital degeneracy N to study the Kondo prob-
lem. In this model, a single band for conduction electrons is
adopted, and the magnetic impurity has N /2 degenerate lo-
calized orbitals plus each orbital carrying a spin degeneracy
of 2. The Anderson Hamiltonian of a magnetic impurity with
spin-orbital degeneracy N in metal has the following expres-
sion:

H = �
k

�kck
†ck + �

�

N

��f�
† f� +

U

2 �
���

N

f�
† f�f�

† f�

+ �
k,�

N

�Vk�ck
†f� + Vk�

� f�
†ck� , �1�

where we have defined k= �k� ,�� for conduction-band indi-
ces. ck

† and f�
† are, respectively, the creation operators for

conduction and f electrons at the impurity site. The quanti-
ties �k and �� are the band energy of conduction electrons
and energy of the local electron in the � orbital �spin index
included� at the impurity site, respectively. For simplicity, a
constant conduction electron density of states �DOS� is as-
sumed, i.e., ����=1 /2D when −D��k�D, where D is the
band half width. Here an SU�N�-type Coulomb interaction
with strength U is assumed between electrons of different
orbitals �or with opposite spins in the same orbital� at the
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impurity site, and Vk� represents the s-f hybridization.
The decoupling scheme used in the original work of Ap-

pelbaum, Penn, and Lacroix �APL� �Refs. 5 and 6� has been
regarded as standard in EOM. The “standard” scheme for the
EOM starting from the local electron Green’s function gen-
erates the higher-order Green’s function, which have to be
truncated. Thereby one obtains a closed set of equations to
be solved self-consistently. However, a close look at the trun-
cating approximation, certain higher order of the Green’s
function terms should not be simply discarded, and they need
to be properly included since these terms are absent at N
=2 and become important when N is larger than 2. We here
generalize Lacroix’s N=2 decoupling scheme to the large-N
case and write the matrix element of the following higher-
order Green’s function as proposed by Czycholl7 in the ap-
proximate form:

��f�f	
† f	ck

†f���f�
†�� = �ck

†f�����f�f	
† f	�f�

†�� + O�V2� . �2�

Corrections to this decoupling scheme are of the order of V2

and can be neglected in the limit of V→0, and the validity of
this corrections has been discussed in Ref. 7. Adding the
above terms to our work is necessary to make the local elec-
tron Green’s functions satisfy a set of self-consistent equa-
tions and make the EOM more powerful as will be demon-
strated below. After a complicated but straightforward
derivation, the final expression for the matrix element of the

impurity Green’s function G�� =
def

��f� � f�
†��	G��
�� in the

large-N approximation is found to be

G�� =
1 − n̄�����

� − �� − �0,� +
U�1,���

� − �� − U − �0,� − �3,���

+
n̄�����

� − �� − �0,� − U −
U��3,��� − �1,����

� − �� − �0,� − �3,���

. �3�

Here the spin-orbital index ����, and we have defined sev-
eral self-energies and functions. The variable n̄�� is defined
as

n̄����� =
def

�N − 1�
�n��� + �
k

Vk���ck
†f���

D1,����k,��
+ �

k

Vk��
� �f��

† ck�

D2,����k,��� ,

�4�

where n� is the occupation number of local electrons on
spin-orbital �. The three self-energies are

�0,� =
def

�
k

�Vk��2

� − �k
, �5�

�1,��� =
def

�N − 1��
k

Vk��
� ��q

Vq���cq
†ck� − �0,��f��

† ck��
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and

�3,��� =
def

�
k

�Vk���
2
 1

D1,����k,��
+

1

D2,����k,��� , �7�

where we have defined two functions,

D1,����k,�� =
def

� + �k − �� − ��� − U �8�

and

D2,����k,�� =
def

� − �k − �� + ���. �9�

The final expression of Eq. �3� is nontrivial and requires a
delicate derivation. We can simply summarize our main re-
sults.

�1� The high-order Green’s functions have been naturally
included in our derivation, which enables us to truncate ar-
bitrary order to close the coupling integral equations; �2� the
higher-order decoupling scheme we have used in our deriva-
tion makes our formula be distinguished from the previous
conventional N=2 results; �3� Eq. �3� is not an extension to
APL �Refs. 5 and 6� but a different large-N decoupling
scheme. It is due to the fact that all of the terms N−1, which
are implicitly included in Eq. �3� and explicitly expressed in
Eqs. �4� and �6�, are absent if one takes the APL decoupling
with the large-N EOM.

We shall illustrate the following features and ingredients
of Eq. �3�: �1� it includes a set of the N�2 closed self-
consistent integral equations, which can be numerically
solved; �2� the effective occupancy is frequency dependent;
�3� the higher-order self-energy contains the intermediate
off-diagonal states in momentum space �e.g., �ck

†cq�� and
charge fluctuations �e.g., �f�

†cq��; �4� it reproduces the results
from the standard N=2 EOM in the infinite-U limit,8 and for
the finite-U case, the formulation is different in essence than
that from the standard decoupling approach8 by noticing the
sign change before the terms involving D1 in Eq. �4� and
�0 /D1 in Eq. �6�.

Before we proceed to carry out numerical calculations, we
shall also point out that the expectation value of �cq

†ck� and
�f��

† ck�, which have been discarded in the EOM with the APL
decoupling scheme, prove to be very important at low tem-
peratures since they diverge logarithmically at the Fermi
level as the temperature approaches zero. Their values
should be self-consistently evaluated through the spectral
densities between the conduction electron and the impurity
Green’s functions,
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�cq
†ck� = −

1


� fFD���Im��ck�cq

†��d� , �10�

where fFD���=1 / �exp�� /kBT�+1� is the Fermi-Dirac distri-
bution function, and the Green’s function ��ck�̄ �cq�̄

† �� is

��ck�cq
†�� =


q,k

� − �k
+

Vk��Vq��
� ��f���f��

† ��

�� − �k��� − �q�
, �11�

and similarly

�f��
† ck� = −

1


� f���Im��ck�f��

† ��d� , �12�

with

��ck�f��
† �� =

Vk����f���f��
† ��

�� − �k�
. �13�

Solving the coupled Eq. �3� not only yields the correct
Kondo resonance at low temperatures but also allows us to
explicitly include the logarithmic divergence in general.
When the spin-dependent effect is taken into account, the
significance of our present EOM approach is that it does not
rely on the additional renormalization introduced in the pre-
vious EOM technique.9 The purpose of the additional renor-
malization is to account for the spin-dependent level splitting
and broadening.22,23 The lack of rigorous justification for the
existence of the additional renormalization has cast a doubt
for the effectiveness of the EOM approach for the nonequi-
librium Kondo problem. In our improved EOM formula, we
find that the correct Kondo resonance can be derived without
introducing the additional renormalization. Comparing with
previous calculations, we have properly evaluated terms such
as �cq

†ck� and �f��
† ck� through Eq. �6�.8 These terms make

crucial contributions to the Kondo resonance peak at very
low temperatures. Neglecting these terms will lead to severe
errors, which has to be recovered by adding ad hoc an addi-
tional renormalization.

III. NUMERICAL RESULTS

A. Kondo resonance in the absence of a magnetic field

In order to demonstrate the power of our large-N EOM
approach, we shall apply our present formulation to consider
the Kondo impurity problem in the particle-hole symmetric
case, where the standard N=2 EOM fails to show the Kondo
resonance peaks. In this case, the incoherent peaks for Vk�

=0 are symmetrically placed about the Fermi level at �=
−U /2 and �=U /2. If the model system has particle-hole
symmetry, the impurity site is half filled and the average
occupation of each spin-orbital �n��=0.5, for which the im-
purity bare level plays the role of Lagrange multiplier and
should be adjusted within the method. This symmetric model
can display the full range of behavior from nonmagnetic for
kBT ,U��0 to magnetic and Kondo behavior for U��0,
where �0=−Im��0,���+ i0+��. We shall examine this well-
studied case by numerically solving Eq. �3�, and we choose
the following parameters for our numerical calculation. The

energy of the half width of the impurity resonance in a non-
magnetic metal, �0, is taken to be 0.1 in the unit of
conduction-band half width D unless specified otherwise. In
this special case, the Coulomb interaction energy U has usu-
ally been taken as a parameter.

The first illuminating example is the more familiar equi-
librium Kondo problem where both the impurity bare level
and the hybridization are spin-orbital degenerate. As shown
on the top panel of Fig. 1, when one uses the formulation
from the standard EOM for N=2,8 there are no Kondo reso-
nance peaks �dashed line�. This result numerically confirms
the analysis made by Kashcheyevs et al.14 that the standard
EOM technique, as a severe drawback, cannot produce the
Kondo resonance at the particle-hole symmetric point. Inter-
estingly, within our large-N EOM technique, the Kondo reso-
nance peak at the Fermi energy is indeed obtained even for
N=2. With an increase in the spin-orbital degeneracy N, the
spectral weight is transferred more significantly from the vir-
tual bound states toward the coherence region around the
Fermi energy. This behavior is similar to the case, as dem-
onstrated below, when the localized level is moved toward
the Fermi energy within the energy region of bare resonance
width �0—mixed-valence region. Notice that, for N�4, ex-
cept those two peaks symmetrically placed around the Fermi
energy, other high-energy atomic peaks, which are important
at very high temperatures, are beyond the description of the
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FIG. 1. �Color online� Top: spectral DOS calculated via the
EOM method for particle-hole symmetric Anderson impurity model
for different spin-orbital degeneracy N at zero temperature with
Coulomb interaction U=4. The short dashed line as denoted by
N*=2 is the result from the standard EOM formulation while other
lines correspond to our large-N ��2� formulation. Bottom: results
of spectral DOS via large-N limit EOM for N=2 particle-hole sym-
metric Anderson model with different Coulomb interaction U. The
peak intensity at the Fermi energy decreases as U is increased.
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present EOM formulation. The bottom panel of the Fig. 1
shows the impurity spectral �� f↑=� f↓� DOS for different
Coulomb energy U at zero temperature by using our large-N
EOM formula. At small values of U, the DOS exhibits the
two broad peaks at �=−U /2 and �=U /2, respectively, and a
sharp Kondo resonance peak at the Fermi level. With the
increased U, the Kondo resonance peak disappears gradually,
evolving into a localized state. These well-known results
agree with many various approaches, e.g., the scaling
analysis,24 the numerical renormalization-group �NRG�
method, and NCA.15 Throughout the calculations, it has also
been observed that the impurity spectral density satisfies the
sum rule �����d�=1 reasonably well.

The temperature-dependent effect has been shown in Fig.
2. We find that the width and height of Kondo resonance
peaks dramatically changed with increasing temperature. The
inset displays the zoom-in view of the Kondo resonance near
the Fermi energy. By further increasing the temperature, the
Kondo resonance peaks disappear at a characteristic tem-

perature �about 0.3 for the given parameter values�. We
should also mention but not show that the present large-N
EOM technique can describe equally well the Kondo physics
for an asymmetric Anderson impurity model.

B. Kondo Resonance in the presence of a magnetic field

We now consider another very interesting application of
our large-N limit EOM technique to the Kondo impurity
problem in the presence of external magnetic field. We show
in Fig. 3 the spectral DOS for a finite-U particle-hole sym-
metric model at different exchange fields. A splitting of the
Kondo resonances peaks for the spin-up and spin-down elec-
trons is obtained at energy �= �2Hex. There is no spurious
peak but only a small bump showing up near the Fermi en-
ergy. This result is in reasonable agreement with that from
the NRG calculations,25,26 except for a small bump obtained
here. However, the advantage of the present method is that
the determination of the asymmetric peak form is free of
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FIG. 2. �Color online� Spectral DOS calcu-
lated via the large-N limit EOM method N=2 for
a finite-U particle-hole symmetric Anderson im-
purity model at various temperatures. The inset
displays the zoom-in view of the Kondo reso-
nance near the Fermi energy. The peak intensity
at the Fermi energy decreases as the temperature
is increased.
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FIG. 3. �Color online� Spectral DOS calcu-
lated via the large-N limit EOM method N=2 for
a finite-U particle-hole symmetric Anderson im-
purity model at different exchange fields.
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such numerical uncertainty as the logarithmic broadening
scheme used in the NRG approach, thus providing an up-
dated result on the magnetic field effect.

IV. SUMMARY

In conclusion, we have developed a large-N EOM ap-
proach to the Kondo impurity problem for arbitrary Coulomb
interaction U at finite temperatures. Numerical results are
carried out for symmetric Anderson impurity model with fi-
nite U. We show that the Kondo resonance peak, which es-
capes from the standard EOM approach for the particle-hole
symmetric point, can be restored in the present technique.

Furthermore, we have also shown that the present technique
describes reasonably well the field dependence of the Kondo
effect. Both successes establish the power of this present
EOM technique.
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